LINEAR ALGEBRA HOMEWORK

JULY 22, 2023

Exercise 1. Let $f : A \to B$, $g : B \to C$ be surjective maps. Show that $g \circ f$ is also surjective.

Exercise 2. Let $f : A \to B$ be a map with inverse f^{-1} , then we have $B \xrightarrow{f^{-1}} A \xrightarrow{f} B$. Show that $f \circ f^{-1}$ is id_B .

Exercise 3. Let $f : A \to B$ be a map with inverse f^{-1} . Show that f^{-1} is a bijection.

Exercise 4. Let $f : A \to B$, $g : B \to A$ be two maps. Assume $gf = id_A$, $fg = id_B$.

- (1) Show that f is a bijection.
- (2) Show that the inverse of f is g.

Exercise 5.

- (1) If F is a field such that |F| is a prime number p, show that F is a unique isomorphism to a $\mathbb{Z}/p\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}.$
- (2) If F is a field such that |F| is finite, then |F| = p^r, where p is a prime, r ∈ Z₊. (Hint: Assume that 2 = 0 in F. Define that the map Z/2 → F, assigning 0,1 in Z/2 to 0,1 in F. Show that this map is linear over the field Z/2. [You will have to guess what this means.] Next, consider all possible linear maps (Z/2)^k → F that is injective for each k = 1,2,... Show that there is a positive integer r such that such an injective linear map exists, for k = 1,2,...,r. But such an injective linear map does not exist for k = r + 1.)