LINEAR ALGEBRA HOMEWORK

JULY 22, 2023

Exercise 1. Let $f: A \rightarrow B, g: B \rightarrow C$ be surjective maps. Show that $g \circ f$ is also surjective.
Exercise 2. Let $f: A \rightarrow B$ be a map with inverse f^{-1}, then we have $B \xrightarrow{f^{-1}} A \xrightarrow{f} B$. Show that $f \circ f^{-1}$ is $i d_{B}$.
Exercise 3. Let $f: A \rightarrow B$ be a map with inverse f^{-1}. Show that f^{-1} is a bijection.

Exercise 4. Let $f: A \rightarrow B, g: B \rightarrow A$ be two maps. Assume $g f=i d_{A}, f g=i d_{B}$.
(1) Show that f is a bijection.
(2) Show that the inverse of f is g.

Exercise 5.

(1) If F is a field such that $|F|$ is a prime number p, show that F is a unique isomorphism to a $\mathbb{Z} / p \mathbb{Z}=\{\overline{0}, \overline{1}, \ldots, \overline{p-1}\}$.
(2) If F is a field such that $|F|$ is finite, then $|F|=p^{r}$, where p is a prime, $r \in \mathbb{Z}_{+}$. (Hint: Assume that $2=0$ in F. Define that the map $\mathbb{Z} / 2 \rightarrow F$, assigning 0,1 in $\mathbb{Z} / 2$ to 0,1 in F. Show that this map is linear over the field $\mathbb{Z} / 2$. [You will have to guess what this means.] Next, consider all possible linear maps $(\mathbb{Z} / 2)^{k} \rightarrow F$ that is injective for each $k=1,2, \ldots$ Show that there is a positive integer r such that such an injective linear map exists, for $k=1,2, \ldots, r$. But such an injective linear map does not exist for $k=r+1$.)

